Search results for "Neuronal Calcium-Sensor Proteins"

showing 2 items of 2 documents

A53T-Alpha-Synuclein Overexpression Impairs Dopamine Signaling and Striatal Synaptic Plasticity in Old Mice

2010

BACKGROUND: Parkinson's disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA…

AgingDopaminelcsh:MedicineMicechemistry.chemical_compoundHomer Scaffolding ProteinsReceptor Cannabinoid CB1lcsh:ScienceLong-term depressionNeurotransmitterChromatography High Pressure LiquidIn Situ Hybridization FluorescenceOligonucleotide Array Sequence AnalysisMice KnockoutNeuronal PlasticityMultidisciplinaryReverse Transcriptase Polymerase Chain ReactionDopaminergicNeurodegenerationGenetics and Genomics/Gene ExpressionElectrophysiologyalpha-SynucleinResearch ArticleRadioimmunoprecipitation Assaymedicine.medical_specialtyNeuronal Calcium-Sensor ProteinsHOMER1Substantia nigraNeurotransmissionBiologyNeurological DisordersInternal medicinemedicineAnimalsHumansddc:610Cyclic Nucleotide Phosphodiesterases Type 7Activating Transcription Factor 2lcsh:RNeuropeptidesmedicine.diseaseMolecular biologyCorpus StriatumMice Mutant StrainsEndocrinologyGenetics and Genomics/Disease ModelschemistrySynaptic plasticitylcsh:QCarrier ProteinsPLoS ONE
researchProduct

Interaction of Neuronal Calcium Sensor-1 (NCS-1) with Phosphatidylinositol 4-Kinase β Stimulates Lipid Kinase Activity and Affects Membrane Trafficki…

2001

Phosphatidylinositol 4-kinases (PI4K) catalyze the first step in the synthesis of phosphatidylinositol 4,5-bisphosphate, an important lipid regulator of several cellular functions. Here we show that the Ca(2+)-binding protein, neuronal calcium sensor-1 (NCS-1), can physically associate with the type III PI4Kbeta with functional consequences affecting the kinase. Recombinant PI4Kbeta, but not its glutathione S-transferase-fused form, showed enhanced PI kinase activity when incubated with recombinant NCS-1, but only if the latter was myristoylated. Similarly, in vitro translated NCS-1, but not its myristoylation-defective mutant, was found associated with recombinant- or in vitro translated P…

Cell Membrane PermeabilityLipoproteinsNeuronal Calcium-Sensor ProteinsLipid kinase activityBiologyPhosphatidylinositolsbehavioral disciplines and activitiesBiochemistrychemistry.chemical_compoundsymbols.namesakePhosphatidylinositol PhosphatesChlorocebus aethiopsmental disordersAnimalsCalcium SignalingPhosphatidylinositol1-Phosphatidylinositol 4-KinaseMolecular BiologyCellular compartmentMyristoylationKinaseCalcium-Binding ProteinsCell MembraneNeuropeptidesBiological TransportCell BiologyTransfectionGolgi apparatusCell CompartmentationRatsCell biologychemistryBiochemistryNeuronal calcium sensor-1COS Cellssymbolsbiology.proteinCattleMyristic AcidsProtein Processing Post-TranslationalProtein BindingJournal of Biological Chemistry
researchProduct